免费一看一级欧美-免费一区二区三区免费视频-免费伊人-免费影片-99精品网-99精品小视频

課程目錄:Machine Learning and Deep Learning培訓
4401 人關注
(78637/99817)
課程大綱:

         Machine Learning and Deep Learning培訓

 

 

 

Machine learning
Introduction to Machine Learning

Applications of machine learning
Supervised Versus Unsupervised Learning
Machine Learning Algorithms
Regression
Classification
Clustering
Recommender System
Anomaly Detection
Reinforcement Learning
Regression

Simple & Multiple Regression
Least Square Method
Estimating the Coefficients
Assessing the Accuracy of the Coefficient Estimates
Assessing the Accuracy of the Model
Post Estimation Analysis
Other Considerations in the Regression Models
Qualitative Predictors
Extensions of the Linear Models
Potential Problems
Bias-variance trade off [under-fitting/over-fitting] for regression models
Resampling Methods

Cross-Validation
The Validation Set Approach
Leave-One-Out Cross-Validation
k-Fold Cross-Validation
Bias-Variance Trade-Off for k-Fold
The Bootstrap
Model Selection and Regularization

Subset Selection [Best Subset Selection, Stepwise Selection, Choosing the Optimal Model]
Shrinkage Methods/ Regularization [Ridge Regression, Lasso & Elastic Net]
Selecting the Tuning Parameter
Dimension Reduction Methods
Principal Components Regression
Partial Least Squares
Classification

Logistic Regression

The Logistic Model cost function

Estimating the Coefficients

Making Predictions

Odds Ratio

Performance Evaluation Matrices

[Sensitivity/Specificity/PPV/NPV, Precision, ROC curve etc.]

Multiple Logistic Regression

Logistic Regression for >2 Response Classes

Regularized Logistic Regression

Linear Discriminant Analysis

Using Bayes’ Theorem for Classification

Linear Discriminant Analysis for p=1

Linear Discriminant Analysis for p >1

Quadratic Discriminant Analysis

K-Nearest Neighbors

Classification with Non-linear Decision Boundaries

Support Vector Machines

Optimization Objective

The Maximal Margin Classifier

Kernels

One-Versus-One Classification

One-Versus-All Classification

Comparison of Classification Methods

Introduction to Deep Learning
ANN Structure

Biological neurons and artificial neurons

Non-linear Hypothesis

Model Representation

Examples & Intuitions

Transfer Function/ Activation Functions

Typical classes of network architectures

Feed forward ANN.

Structures of Multi-layer feed forward networks

Back propagation algorithm

Back propagation - training and convergence

Functional approximation with back propagation

Practical and design issues of back propagation learning

Deep Learning

Artificial Intelligence & Deep Learning

Softmax Regression

Self-Taught Learning

Deep Networks

Demos and Applications

Lab:
Getting Started with R

Introduction to R

Basic Commands & Libraries

Data Manipulation

Importing & Exporting data

Graphical and Numerical Summaries

Writing functions

Regression

Simple & Multiple Linear Regression

Interaction Terms

Non-linear Transformations

Dummy variable regression

Cross-Validation and the Bootstrap

Subset selection methods

Penalization [Ridge, Lasso, Elastic Net]

Classification

Logistic Regression, LDA, QDA, and KNN,

Resampling & Regularization

Support Vector Machine

Resampling & Regularization

Note:

For ML algorithms, case studies will be used to discuss their application, advantages & potential issues.

Analysis of different data sets will be performed using R

主站蜘蛛池模板: 久久精品国产亚洲妲己影院 | 牛牛影视精品一区二区在线看 | 国产成人高清亚洲一区91 | 97免费| 天天色综合4 | 亚洲色图 在线视频 | 久久久精品免费观看 | 国偷盗摄自产福利一区在线 | 极品美女在线观看 | 黑人粗进入欧美一级 | 亚洲精品亚洲人成毛片不卡 | 欧美a图| 操弄小说 | 天美传谋和果冻传媒最漂亮 | 成人免费在线视频 | 日韩一级片在线 | 国产一在线精品一区在线观看 | 无码h肉动漫在线观看 | 四虎精品免费久久 | 欧美日韩中文国产va另类 | 两个人的视频全免费观看在线 | 性欧美高清极品xx | 国精品在亚洲_欧美 | 亚洲福利视频一区二区三区 | 青青热久久国产久精品 | 欧美午夜大片 | 日日插天天操 | 欧美.com | 久艹精品| 成人黄色在线 | 日韩另类视频 | sdmua-011| 亚洲黄色第一页 | 两个人免费在线观看 | 最新更新国内自拍视频 | 欧美亚洲一区二区三区在线 | 亚洲播放| 欧美日韩精品一区二区免费看 | a三级毛片 | 亚洲视频免费在线看 | 精品国产一区二区三区久久久蜜臀 |